skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Truong, Nhut"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 1, 2026
  2. Free, publicly-accessible full text available November 26, 2026
  3. Free, publicly-accessible full text available August 1, 2026
  4. Galaxy clusters are unique laboratories for studying astrophysical processes and their impact on halo gas kinematics. Despite their importance, the full complexity of gas motion within and around these clusters remains poorly known. This paper is part of a series presenting the first results from the new TNG-Cluster simulation, a suite comprising 352 high-mass galaxy clusters including the full cosmological context, mergers and accretion, baryonic processes and feedback, and magnetic fields. Studying the dynamics and coherence of gas flows, we find that gas motions in galaxy cluster cores and intermediate regions are largely balanced between inflows and outflows, exhibiting a Gaussian distribution centered at zero velocity. In the outskirts, even the net velocity distribution becomes asymmetric, featuring a double peak where the second peak reflects cosmic accretion. Across all cluster regions, the resulting net flow distribution reveals complex gas dynamics. These are strongly correlated with halo properties: at a given total cluster mass, unrelaxed, late-forming halos with fewer massive black holes and lower accretion rates exhibit a more dynamic behavior. Our analysis shows no clear relationship between line-of-sight and radial gas velocities, suggesting that line-of-sight velocity alone is insufficient to distinguish between inflowing and outflowing gas. Additional properties, such as temperature, can help break this degeneracy. A velocity structure function (VSF) analysis indicates more coherent gas motion in the outskirts and more disturbed kinematics toward halo centers. In all cluster regions, the VSF shows a slope close to the theoretical models of Kolmogorov (∼1/3), except within 50 kpc of the cluster centers, where the slope is significantly steeper. The outcome of TNG-Cluster broadly aligns with observations of the VSF of multiphase gas across different scales in galaxy clusters, ranging from ∼1 kpc to megaparsec scales. 
    more » « less
  5. ABSTRACT We report results from deep Suzaku and mostly snapshot Chandra observations of four nearby galaxy groups: MKW4, Antlia, RXJ1159+5531, and ESO3060170. Their peak temperatures vary over 2–3 keV, making them the smallest systems with gas properties constrained to their viral radii. The average Fe abundance in the outskirts (R > 0.25R200) of their intragroup medium is $$Z_{\rm Fe}=0.309\pm 0.018\, Z_\odot$$ with χ2 = 14 for 12 degrees of freedom, which is remarkably uniform and strikingly similar to that of massive galaxy clusters, and is fully consistent with the numerical predictions from the IllustrisTNG cosmological simulation. Our results support an early-enrichment scenario among galactic systems over an order of magnitude in mass, even before their formation. When integrated out to R200, we start to see a tension between the measured Fe content in intracluster medium and what is expected from supernovae yields. We further constrain their O, Mg, Si, S, and Ni abundances. The abundance ratios of those elements relative to Fe are consistent with the predictions (if available) from IllustrisTNG. Their Type Ia supernovae fraction varies between 14 per cent and 21 per cent. A pure core-collapsed supernovae enrichment at group outskirts can be ruled out. Their cumulative iron-mass-to-light ratios within R200 are half that of the Perseus cluster, which may imply that galaxy groups do not retain all of their enriched gas due to their shallower gravitational potential wells, or that groups and clusters may have different star formation histories. 
    more » « less